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1 Motivation

1.1 Moduli of circles

The moduli space of circles with a fixed origin is (0,∞); circle determined by its radius.

If it’s circles in the plane, the moduli is R2 × (0,∞).

Neither is compact; consider circles tangent to a given point; moduli is S1 × (0,∞). To com-
pactify, add “degenerate” circles, namely a point and “infinite circle” (a straight line). Then the
moduli space is S1 × [0,∞] ' S1 × [0, 1] is a cylinder.

1.2 Inscribed Rectangles

Let C be a Jordan curve. It is a remarkable fact that every such curve contains an inscribed
rectangle. It is not known, but strongly suspected, that every closed curve contains an inscribed
square. The proof uses moduli-theoretic ideas.

A rectangle is equivalent to two equal length line segments with a common midpoint. Thus the
idea is to parametrize pairs of points on C together with their midpoint. For each pair (x, y) ∈ C2,
let m be their midpoint, and (m,h) ∈ R2 × R ' R3 be the point at height h = |x − y| above m.
The set of all such points defines a surface M ⊂ R3; thus two equal distance line segments intersect
at a common midpoint if and only if M has a self-intersection! Careful consideration shows that
M is a Möbius strip whose boundary lies on C. If B is the interior of C, then B ∪M is a disk
and a Möbius strip glued along their boundaries, i.e. a real projective plane. But if M has no
self-intersection, M ∪B is a real projective plane embedded in R3, which is impossible!

2 Moduli in algebraic geometry

The two examples above are for motivation only, as they are not algebro-geometric (in topology,
they are usually called classifying spaces). Moduli spaces also show up in differential geoemtry
(moduli of flat connections, Hitchin moduli spaces, etc.) Now we give some examples of moduli
spaces in algebraic geometry.

2.1 Review of Algebraic Varieties

The classical definition of an affine (resp. projective) algebraic variety over a field k is the set
of solutions to a system of (homogeneous) polynomial equations f1, . . . , fr in kn (resp. kPn :=
(kn+1−{0})/k×). A quasi-projective variety is an open subset of a projective variety (using Zariski
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topology). This includes affines. Sometimes people require varieties to be irreducible.

Consider the variety xn + yn = 1 in Q2 for n ≥ 2. When n = 2, this is a dense subset of a
circle. When n ≥ 3 however, this only has (±1, 0) or (0,±1) as solutions. But over C, this is a
beautiful curve. We want to “see” this beautiful curve even if it’s only defined over Q. For this we
need schemes. This brings us to our true definition of affine and projective varieties.

Definition 1. We define affine n-space (resp. projective n-space) over Z as the schemes AnZ =
SpecZ[T1, . . . , Tn] (resp. PnZ = ProjZ[T0, . . . , Tn]). Their relative versions over an arbitrary scheme
S are given by AnS = AnZ ×Z S and PnS = PnZ ×Z S.

An affine (resp projective) variety over a field k is a (reduced) closed k-subscheme of Ank (resp.
Pnk).

An algebraic variety over a field k is a separated k-scheme of finite type.

Examples: Spec k[x, y]/(y2−4x3−g2x−g3); Spec k[x]/(xn); SpecQ[x, y]/(x2+y2±1); SpecR[x, y]/(x2+
y2).

Definition 2. A variety X → Spec k is geometrically reduced (connected, irreducible, integral) if
Xk̄ has the corresponding property. Read Qing Liu Section 3.2.

Varieties often naturally come in families. What this means is that given any surjective mor-
phism of schemes X → S, we can think of the base as “parametrizing” a family of varieties by
looking at fibres over points: Xs → Spec k(s). Here’s a nice example:

Example 1. Let E → SpecQ be an elliptic curve defined by the Weierstrass equation y2z =
4x3 − g2xz

2 − g3z
3. For this equation to define a smooth curve, the RHS must have no repeated

roots, i.e. the discriminant 4g3
2−27g2

3 must be nonzero. Suppose that the discriminant is an integer
(which can be achieved after a suitable linear change of variables). Then the primes dividing the
discriminant are those for which E has “bad reduction”. What does this mean? An integral model
for E is a scheme E → SpecZ whose generic fibre is E. The special fibres EFp → SpecFp are
the reductions of the elliptic curve (take the equation and reduce mod p), and those with nonzero
discriminant mod p have Ep smooth. Thus E → SpecZ[1/∆] where ∆ is the discrimiant is a family
of elliptic curves.

For another example, consider E → SpecC[t] via E : y2 = x(x − 1)(x − t). Specializing along
various values of t yields a family of elliptic curves. In fact all elliptic curves over C arise in this
way, so in some sense E is the universal elliptic curve over C.

A morphism of schemes X → S is called a universal fibre space if OS → f∗OX is an isomorphism
after arbitrary base change.

Proposition 3. A proper flat morphism with geometrically reduced and connected fibres is a uni-
versal fibre space.

Proof. Since all properties are stable under base change, we are free to stay at the ground scheme.
By proper flat base change, it is enough to show that H0(Xs,OXs) = k(s). Since Xs → Spec k(s)
is proper, H0(Xs,OXs) is finite-dimensional over k(s) (Qing Liu Cor. 3.3.19). Since Xs is reduced,
H0(Xs,OXs) is reduced over k(s); since Xs is connected, H0(Xs,OXs) has a unique minimal
prime ideal. Hence H0(Xs,OXs) is a finite-dimensional reduced integral domain over k(s), hence
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algebraic over k(s). Since these properties are stable under base change, and H0((Xs)K ,OXK
) '

H0(Xs,OXs)×k(s) K by flat base change (you can also argue as Qing Liu does in Cor. 3.3.21), we
must have equality.

2.2 Projective space as a moduli space

What is the relationship between k-valued solutions to polynomial equations and S-valued points
on schemes as given above?

Proposition 4. Let X → Spec k be a (quasi-)projective variety, i.e.

X = V+(f1, . . . , fr) ∩ U ⊂ Pn.

Then
X(k) := Mor(Spec k,X)

∼−→ {x ∈ U ⊂ Pn(k) : fi(x) = 0 ∀i = 1, . . . , r}.

Proof. Given x ∈ Z+(f1, . . . , fr) and let mx = (T0−x0, . . . , Tn−xn), a maximal ideal in X (I ⊂ mx)
with residue field k; explicitly,

OX(D+(Ti))/mx → k : f(t) 7→ f(x) mod mx.

Conversely, given x ∈ X(k), set xi to be the image of Ti in k(x) = k; then f(x) = 0 for all f ∈ I
(look at Taylor expansion about x) and we win.

So this hints at the importance of sections of the structure map X → Spec k. What about
R-algebras? S-schemes? Say we want a definition of RPn, i.e. R-lines in Rn+1. But if you think
carefully, if R is not a domain, and a is a zero-divisor, aR is not a free R-module, so should it count
as a subspace? Perhaps only the 1-dimensional free submodules should count?

If we want lines up to isomorphism, we need to distinguish Z(1, 1) ⊂ Z2 from Z(2, 2), so we
should only consider Z(a, b) with gcd(a, b) = 1. Scheme theoretically, we want P1(X) to line
bundles generated by a two global sections. Similarly, P2(Z) should be the set of Z(a, b, c) with
gcd(a, b, c) = 1, i.e. line bundles generated by three global sections. So Pn(R) should be line
bundles generated by n+ 1-global sections (i.e. elements of R). This extends to arbitrary schemes.

Upgrading to X → S, the S-valued points are X(S) = {S → X} sections to X → S.

Theorem 5 (Qing Liu Prop 5.1.31). Let S be any scheme, X → S an S-scheme, and PnS projective
n-space over S (defined as PnZ ×Z S). Then

PnS(X) = {(L, s0, . . . , sn) : si global generators of L}.

Proof. Fix a map f : X → PnS . Since OPn
S
(1) is a line bundle generated by the global sections

Ti, we obtain the line bundle L := f∗OPn
S
(1) and global generators si := f∗Ti of L. Then pass to

isomorphism classes. Conversely given L and global generators s0, ,̇sn, the open sets Xsi = {x ∈
X : (si)xLx = Lx} cover X, so the morphisms fi : Xsi → D+(Ti) corresponding to ring maps

OPn
S
(D+(Ti))→ OX(Xsi) : Tj/Ti 7→ sj/si

glue to a map f : X → PnS satisfying f∗O(1) = L.

Notice how promoting Pn to a scheme-theoretic definition yields a functorial interpretation of
projective space. Thus Pn is a “moduli space of globally generated line bundles together with their
generators”. Let’s introduce some basic category theory:
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Definition 6. Let C be a category; a functor F : Co → Set is called a (set-valued) presheaf. We
say F is representable by an object X ∈ C if there is a natural transformation η : F ' hX where

hX : C0 → Set is the functor hX(T ) = Hom(T,X) and hX(T ′
f−→ T ) : Hom(T,X) → Hom(T ′, X) :

ϕ 7→ ϕ ◦ f .

Proposition 7 (Yoneda’s lemma). Let C be any category, and X be an object of C. The functor C →
PSh(C) : X 7→ hX is fully faithful. Moreover, if F ∈ Psh(C), then the functor Func(C,PSh(C)) →
PSh(C × PSh(C)) : (F η hX) 7→ FX is a natural transformation.

Proof. Exercise.

A representable presheaf F ' hX comes with a universal object ξ ∈ FX corresponding to the
identity morphism idX : X → X. Analyzing the map in Yoneda’s lemma, we find that any object
θ ∈ FT is given by the pullback f∗ξ where f : T → X ∈ Hom(T,X) is the map corresponding to θ.

Note also how this implies that Hom(X,Y ) ' Hom(hX , hY ). This is Grothendieck’s relative
point of view ; instead of studying an object X, study all maps T → X. We can now define moduli
spaces for real:

Definition 8. Let F : (Sch /S)op → Set be a functor. This is called a moduli problem. A fine
moduli space for F is a scheme X together with a natural transformation F ' hX .

As seen in the theorem, the pair (PnS , (O(1), T0, . . . , Tn)) is the fine moduli space representing
the functor X 7→ {(L, s0, . . . , sn)}/ ∼.

2.3 Touch grass Grassmannians and Quot Schemes

(Reference: Lee Smooth Manifolds Example 1.36) Let V be a vector space over a field k of finite-
dimension n. Classically, Grassmannian varieties/manifolds are given by the following data: as a
set, Grp(V ) = {p-dimensional subspaces of V }; if k = R or C; then Grp(V ) acquires the structure
of a p(n− p)-dimensional smooth (resp. analytic) manifold. Fix complementary subspaces P,Q of
dimensions p, n − p so that V = P ⊕ Q. The graph a linear map T : P → Q may be identified
with a p-dimensional subspace of V , specifically Γ(T ) = {v+ Tv : v ∈ P} which meets Q trivially.
Conversely, any complementary subspace S to Q is the graph of a unique linear map T : P → Q,
specifically (πQ|S) ◦ (πP |S)−1.

The subset UQ of Grp(V ) of p-dimensional subspaces meeting Q trivially and the space of linear
maps Lin(P,Q) are identified via T 7→ Γ(T ), so UQ ' kp(n−p). One can check that the transition
functions involve only products and inverses of matrices, and are thus polynomials. This invites a
scheme-theoretic, and even moduli-theoretic interpretation of Grp(V ).

Just like with projective space, we defined for instance Pn(R) as line bundles on SpecR gen-
erated by (n + 1)-global sections. Since we are now parametrizing p-dimensional subspaces as
opposed to 1-dimensional, line bundles should be replaced by locally free sheaves.

If you think carefully about the manifold construction, one notes that the “points” of Grp(V )
are complements of an n−p-dimensional subspace, which may be thought of as kernels of projection
mappings πQ : V → Q. The difference is that now we take the “dual” definition, i.e. projections
onto p-dimensional subspaces. This is what we use to define the scheme-theoretic Grassmannian.
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One might define the Grassmann functor as Grp : (Sch /S)o → Set : S 7→ {π : O⊕nS → V }/ ∼
where V is p-dimensional. If E = kerπ, then 0 → E → O⊕nS → V → 0 is exact, so on fibres we
have 0 → Ek(s) → k(s)⊕n → Vk(s) → 0 is exact, so Es is a rank n − p-dimensional subspace, so
the inclusion E → OS ⊗ V is a family of rank n − p subspaces of an n-dimensional vector space
parametrized by S, i.e. rank n− p subbundles of O⊕nS .

Theorem 9. Gr(p, n) is representable by a smooth projective scheme of dimension p(n − p) over
SpecZ.

In fact, we will define a slightly more general functors and prove their representability. First,

we will have the “relative Grassmannians”, GrS(p, E) whose T
f−→ S-valued points are isomorphism

classes of surjections f∗E → V where V is a rank k locally free sheaf. Their representability by a
smooth projective S-scheme is proved by reducing to the case of a usual Grassmannian by an easy
glueing argument.

2.4 We touched grass, now what?

The next goal will be to define the Hilbert and Quot schemes. Instead of parametrizing linear
subspaces, we want to parametrize arbitrary (algebraic) subspaces. For these to fit nicely in families,
they must be flat over the base scheme. So we obtain a functor

HilbX/S : T 7→ {Closed subschemes Z ⊂ XT : Z → T is flat and proper}.

While the properness assumption seems to be more restrictive than projective space (since lines in
An are not proper), projective space is equivalent to lines in Pn (a circular definition of course, but
useful in hindsight!). To make sure that the resulting scheme isn’t “too big” (in particular, not
quasi-compact), we will need to restrict the types of by their Hilbert polynomials. We will see this
in a couple of weeks.

Hilbert schemes are crucial, as they allow us to define many more moduli spaces. For in-
stance, the relative divisor scheme DivX/S is an open subscheme of HilbX/S given by DivX/S(T ) =
{relative effective Cartier divisors on XT }. We also have the Picard scheme, which it is the goal of
this course to construct. It is given as follows: PicX/S(T ) = {Line bundles on XT modulo pull backs from Pic(T )}.
Let’s quickly give a spectacular application of the existence of PicX/S .

Theorem 10 (Torelli). The functor C 7→ (Pic0
C/k, θC) from the category of (smooth, geometrically

integral) curves of genus g > 1 to principally polarized abelian varieties is fully faithful. It’s almost
fully faithful when g = 1.

If A an abelian variety, then Pic0
A/k is the dual abelian variety of A, and plays the role of the

dual vector space in linear algebra. It’s importance cannot be overstated.

3 Moduli of curves and abelian varieties

Finally, we mention the most well-known and widely used applications of moduli spaces (at least to
me), that is the moduli of curves and abelian varieties. Let Mg be the functor mapping a scheme
S to the set of curves of genus g over S. This is representable by a smooth Deligne-Mumford
stack when g > 1, and cool things are true for g = 0, 1 as well. Talk about Mg,n and semistable
compactification.

5



The functor M1,1 is the moduli space of elliptic curves or modular stack. If we take pairs (E,P )
where P is a point of order N on E, then the moduli of such pairs is denoted Y1(N) and is called
a modular curve of level Γ1(N). It is a smooth scheme over Z[1/N ] when N ≥ 3, and admits a
nice compactification X1(N) using semistable reduction theory. This is also the case for Mg. This
brings us to another spectacular application of the existence of X1(N) and Picard schemes!

Theorem 11 (Eichler-Shimura). Let N ≥ 3, and p be a prime not dividing N . Set

Jp = Pic0
X1(N)/Fp

= Pic0
X1(N)/Z[1/N ]×Z[1/N ]Fp.

Let the Hecke algebra T1(N) act through the lower star action. Then in EndFp
(Jp), we have

(Tp)∗ = F + 〈p〉∗ F
∨, w−1

ζ Fwζ = 〈p〉−1
∗ F.

There are also stacks of abelian varieties. An abelian variety has a dimension (call it g), a
polarization which is a preferred map A→ Pic0

A/k, just like the elliptic curve case, it can be given

a level structure (point of order N), and its endomorphism ring is very interesting (for elliptic
curves, we have ordinary, CM, and over finite fields, supersingular, corresponding to Z, orders in
imaginary quadratic fields, and quaterion algebras over Z). Their moduli are denoted Ag, Ag,N ,
Ag,N,d and Sh(G,X). The latter is called a PEL-Shimura variety (polarization, endomorphism, level
structure). The Ag,N,d are critical in Falting’s proof of Mordell’s conjecture. Shimura varieties are
the centerpiece of the Langlands program.
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